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1. INTRODUCTION

Various test procedures in multivariate analysis are based upon
certain functions of the eigenvalues of random matrices. A considerable
amount of work was done in the literature on the asymptotic distribution
theory of these statistics when the sample size is very large. But,
many situations arise in multivariate data analysis when the number of
variables and the sample size are both very large. So, there is a
great need to investigate the distributions of various functions of the
eigenvalues of large dimensional random matrices. Distributions of the
eigenvalues of large dimensional random matrices arise (e.g., see
Mehta (1967)) in nuclear physics also.

Some work was done in the literature on the limiting empirical
distribution function (e.d.f.) of large dimensional random matrices.
Here, we note that the e.d.f. of a random matrix Z: pXxp is defined
as N(x)/p where N(x) denotes the number of the eigenvalues of Z which
are less than or equal to x. The e.d.f. (also known as spectral distribution) of
Z is useful in deriving the distributions of certain functions of the eigenvalues of Z.

Now, let S, : p x p be distributed as central Wishart matrix with m degrees

1
of freedom and E(S{/m) = Ip. Also, let p and m both tend to infinity such that
lim(p/m) = y > O, Then, it is known (see Crenander and Sflverstein (1977),
Jonsson (1982) and Wachter (1978)) that the e.d.f. Fm(x) of the eigen-
values of Sl/m tends to Fy(x) where Fy(x) is a distribution function with

density function given by

/(x = a)(b -~ x)
f,00 =4 2rxy

a<x<b
0 otherwise

where a = (1 - /)%, andbes (1 +/7) 2 and 0 <y <1; for1 <y < =, Fy(x) has

mass 1 - (1/y) aL zero and fy(x) on (a,b). Yin and Krishnaiah (1983b) showed
that the spectral distribution of the sample covariance matrix has a limit when

the underlying distribution is {sotropic and y < 1,
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Yin and Krishnaiah (1983a) showed that the spectral distribution of sl'r/ m
tends to a limit in probability for each x under the following conditions:

(a) T is a symmetric, positive definite matrix and G (x) is the e.d.f.
of the eigenvalues of T,

(b) S, and T are independent of each other,

1
(¢) lim(p/m) = y exists and finite
P
k 2 . ik _
(a) fx dG‘:‘(x)—»Hk exists in L for k= 1, 2,... and ZHZk ™,

Yin and Krishnaiah (1984b) extended the above result to the case when Sl 18 the
sample sums of squares and cross products matrix based upon observations from an

isotropic population.

Now, let Slz pXp and SZ: px p be distributed independently as central Wishart matrices

with m and n degrees of freedom and E(S /m) = E(S /n) = Ip' Then, the distribu-
tion of nSlS /m is known to be the central multivariate F matrix. Applying the

result of Yin and Krishnaiah (1983), Yin, Bai, and Krishnaiah (1983) showed that the

limit of the spectral distribution of the central multivariate F matrix exists
vhen p/m -+ y' exists and (p/n) =y <% as p+>=. Silverstein (1984) showed the
validity of the above result even for the case ) <y < 1 by making a minor
modification in the proof of Yin, Bai, and Krishnaiah (1983). Yin and Krishnaiah
(1983a) gave an expression for the moments of the limit of the e.d.f. of the
eigenvalues of SlT/m. Starting from this expression, Silverstein (19848 derived
an explicit expression for the limit of the ed.f. of the eigenvalues of the multivariate F
F matrix, In this paper, the authors give an alternative derivation of the

above limit. The authors also gave explicit expressions for the moments of the
above limiting distribution and these expressions are not known in the literature.

Extensions of the results of this paper for nonnormal populations and nonnull

LR
P N
NE R

cases are under investigation.
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2. PRELIMINARIES

In this section, we give some results which are needed in the sequel as

well as a brief review of known results on limiting spectral distribution

of a multivariate ¥ ﬁatrix.

Lemma 2.1 Let z ¢ (0,1), a' = (1 - /)2 and b' = (1 + /D). 1f 0 < |ef < a',

then

2:z Jb' x 1 t) (G- a(b' - )" dx = %%[1 tz-t-{(1-2z-10)2- 4e2)?]
(2.1)

Proof Making the transformation u = [2x -(b' 4 a')]/(b' - a') in the left

side of (2.1), we obtain

' - &) Jl (1 - o))

R(E) = = > 1 ((x - a') (b - x))dx = du
2nz |, (x - ©) x = x 4nz L ute
' (2.2)
where A = (b' + a' - 2t)/(b* - a'). It is known (see Jonsson (1982))
that R(0) = 1, So, for any r ¢ (0,1), we have
_J_.J‘ (- “2)5 a1, (2.3)
wwr -l u+ (A +1)/2/r)

Now, let A = (1 + r)/2¥r. Since A > 1, the condition r ¢ (0,1) is satisfied.

So, using (2.2) and (2.3), we obtain

R(t) = (b' - a')(a - JAZ -D/Mz={1l+z-¢t-{( -2 - :)2 - 4::)*]/2:.

(2.4)
Lemma 2.2 For any nonnegative integers m and w, we have
{w/2] g ™ 2m - 22 v l®
G =2 . (2.5)
L=() L)l2m -~ w "I
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Here( ) is defined to be zero when m < w. i

Proof If m = 0O, the proof is trivial., We now prove the result for m > 0 by

induction. Suppose the result is true for a fixed value of m. Then, we have

[w§:2]( bt (m+1) (2m+ 2-22 m-{l( ol m 2m+2 - 22
- = 7D +
2=0 L 2m - w + 2 =0 2 (2-1 2m + 2 - w

2m - 22 2m ~ 22
z (-1) +2
2=0 2m + ] -w

m m m <+ 1
« ¥ |42 .21 - 2¥
W w1 w
So the result follows.
Lemma 3
_ @y + g)dy o bay - 285 + (4pB + 2a8
? ( 32 T -2 a®)Y 4 const.
Y + 8y - oy (52 + 4vp)/- 2
. YolWy + 8y - o
3 y (2.6)
- The above lemma can be verified directly by differentiation.
..... N e . N T s -
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3. MOMENTS OF THE LIMITING SPECTRAL DISTRIBUTION
OF A MULTIVARIATE F MATRIX

B haaa:

Let Fy z(x) denote the limit of the e.d.f. of the multivariate F matrix 1

as defined in the preceding section. Also, let {E.k}wk_ldenote the moments of

o
Fy z(x). Then, from Yin and Krishnaiah (1983), we know that T
k-1 v k 1 (3.1) )
E = Yy YCERY) B(k,w) . '.
w=0 w b
where i
(w + 1)! | yw )

B(kyw) = ]| —— 21 HiW e H (3.2)

b !

and the summation in (3.2) is over all possible values of Myseeesny o subject
to the restrictions n1+ coe +nk—w = w+ 1 and n, + n, 4+ o0 +(k - w)nk__w =k,

Also, H = E(x-i) for i = 1, 2,... where the density of x is given by

V(x - a')(b' - x)

a' <x <b'
2mrxz

R e S

gz(x) = (3.3) 1
0 otherwise ]F
where a', b', and z are as defined in the preceding section. For any Itl < a',
: ¢(t)=tH1+t2H2+t3H3+. .. )
o = E(t/(x - t))
. b
= 1 . ' ' L L
] - [t{(x - a")(b' = x)}*/(x - t)]dx
.- 2nz a'
E' =(1=-2z-¢t)[1-{1-{C4ez/(1 - z - t)z)}!i}]/Zz (3.4)
¢ by using Lemma 2.1. Since B(k,w) is the coefficient of tk in Taylor expansion

of {$(¢t) }w+l’ we obtain

L - wtl (w+ 1 k 2
B(k,w) = ) S DR S P ISR U PL- R a6 EU

i

(1 = 2)¥H1=d=k gk (3.5)

w+ 1-2j
L] k-j
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w+1l-2j
Ifw+1l-2j>0, # 0 implies 0 < j <w+1-%k <0, i.e. j = 0.

k-]

wtlfw + 1
Noticing k )(_1)2 = 0, we see that the expression of B(k,w) only contains
=0 2
w+ 1 ] 2 w+ s
the terms with j > I If ¢ is even, then| 2 |# O implies § 3= .
j 2

which is contrary to j > ¥ ; 1 . Thus, in the expression of B(k,w), there are

+ 1

W A

only the terms with j > v and % being odd. Applying lemma 2.2, we obtain

k

[w/2) | w+1 L+
B(k,w) = vz (w )(_l)k'ﬂ z ( )22j-1-wzj-w-l

1=0 {20+ 1 j=[!%§ j

PRy N WO

w 4 1-2j .
x (1 - z)WFl-i-k
k-3

_ W2} el E (22 +1)1(2§ = 2 - 23)! #
=0 3=l :

3 - - 1
20+ 1 ﬁ] jrerQ4 2 ! '
2 ;

[}
€

]
~N

K+ 3
Dytgmvd=w=l (g _ L wHl-3-k

x("

k

]
e

K (k + j - 2)1
= Z J-w-=-Dl(w+ 1) gJ-w-1

wH-j=k
jewdl 110 - w = DT =11 (a -zt

k-
Lot (kK + 3 - Dtw+1)

~k-
i_'o(j+w+l)!j!(k-j-w— .

01 2a -2
(3.6)

From (3.5)und (3.6) it follows that

_ k-] w k] kw1 (k + | 1 ; 5
T LY L s s DTS Fw—pr -

w i=0

k=1 . T kel-j k ]

= Yl - )7k ) yw( ) : (k + 3 - 1) ]

j=0 w=0 - j!(J +U+l)!(k'j -we-1)!" :

(3.7) :

The k=th moment of I (+) can be easily computed from (3.7) TS

Y,z
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4, DERIVATION OF THE LIMITINC SPECTRAL DISTRIBUTION
OF MULTIVARIATE F MATRIX

Substituting the well-known formulas

k w [k=-F-w-=-1|[]+w+1
=1 )( : (4.1)
' t=0 t w-t
into (3.7), we obtain the following by changing the order of summation:
k-1~
k-1 L, X L
E= 120-27 3 aorg- eyt aeypkidttoe
j=0 =0 (k =4 =-1-26)1t!1(3 + t + )3
k-j-1
k=1 —k- S t- kbj=1-2¢
= J2da- 7 &+y-nyTia+y
j=0 t=] (k+3 -1-=-2t)1(t - PN+ D!
k-1 |2t t tyk+3 -1
1 ~k- - k+j-1-2
atEOtt)t+l zzj(I‘Z) j()( )ycj(1+>’)+j t
= j=0 3 2t
(4.2)
Using the formulas
kK+3-1 2t jk -1 h|
)- ) ( )( ) (4.3)
2t g=0 s 2t - s
in (4.2), we obtain
. )
k-1 [2t 2t k= 1
- = 2 ; 2 zj(l - z)—k-j
t, Ek t=0 \¢ | © +1 s-z-t s j=0
- s-t|f ¢t
3 t-jfls-t
[
::- ) kil 2t 1 2t [k = 1 t sgt js - t t'j(l k-t
. T+71 z z - 2)
" t=0 | t s=t| s s - t] j=0 j
B .
s x yl(1 + k1
f k-1 [2¢ 2t (k-1 t
5 - z t—if 2 zZt-s(1 _ z)-k-t
¢ t=0 |\t s=t s s -t
:
E x (1 + y)k-s-].(y + z)s-t
4
&
2
b
= o« . -
B e e e e R . * N

N
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k=l f2¢) € (k- 1yfey ket
- 2 — 2 z- (1 - 2)
t=0 1| ¢t s=0 {s + tf s
« (1 + STl 4 S (4.4)
[(k-1)/2lk-1-s 1k - 1}ty J2t 1 t-s —k-t
= ] t+12 -2
s=0 t=s s + t|\s t
x (1 + y)k-S‘I"t(y + z)s
I A T (25)!(2s + 2¢)!
o o 2 . s!(2s + t)!(s + t + I)!
x 251 - 2)TWES (4 ) RBETIoE g8 (4.5)
.
Define a random vector (U.V) where the marginal density of U is % (1 - x2) fI(O 1)(X)

and the conditional density of V given U = x is

_[.y_l_ I (v
. ).
1 - %% [-/ -x2, J1-x2 ] (4.6)

It is easy to see that

2s,.2t+2s (2s8)1(2t + 28)! -2s~t

E{U™V } = s!'(2s + t)!(s +t + 1)! 4 (4.7)
and that
E{U25+1V2t+25+1} = 0.
Hence, from (4.5), (4.7) it follows that
k=l k-1-s [k = 1| (k=1 -8\ | -k-t-§2-
Ek = E z (1 - z)
s=0 t=0 s t
s
x (1 + y)k--s-t—l(y + z)2 Usv2t+s
2 k-1

—
- 1 kE1+y+ibVZ +4UVvy+Z
(1 - 2) -z VT -z

(4.8)

Now, we compute the distribution of

. -
D SR




2
[1 +y+ A 4UV vy +

L ]/<l-z> (4.9)

1 -2

Let w, = UV and w, = V2. Then we can easily show that the joint distribution

1
of (wl, wz) is

3/2
w,(w, - )
2'72 1 2.2
["’1'“2-5"2]

where I[ takes value 1 if a < B is true and zero otherwise. Applying

a<g]
Lemma 2.3, we can compute the deansity of

T,

+ i?z w, as follows:
vl -z

1 1
Let q; <q, be the two roots of the equation

A-22% 2, 1-2 1 -2 (4.10)

+ - =
Log2 6G +2) % 4z ¢

in the variable q. Let a=1, =0, r = {a - z)/16(y + z)}xz, § = 1 ;;z

and p = 1 -2 . Then
1y + z)

1l -2 2

’4(11'-285’-_—-4(5'__’.2)}{,

4

1 -2 1l -2

= 4B8p + 208 = 77 + iy + ) %

)

a-z) [y+2+x21
16z (y + 2)

2
A3'6 + 4yp =

By Lemma 2.3, we get the density of My tz w, + 4z w, as given below:*
1 -z 2

vl - 2

f.(x) ==
1 T Wy + 2z 16z2

q

q
1 v1-2 (1 - z)2 J 2
q

1

(l-z)/ 8, + 8

6412 /& +2z A /(l - z) ___1-2
3 q 16(y + z)(x -9

Since q; and q, are roots of equation (4.10), we have

% Use the formula f_, (x) = | f(x-q,q) dq where fx+y(') and £(.,.) are the densities
of x+y and (x,y) respgctivel

** Note that the 1ntegrand is zero outside the interval [ql,qZ] by the indicator factor.




B

q *
£ Q- 2)5/2 4 * 8,9 2
1(x) = 2 T -z
64Tz Yy + 2 A3 7z 4 9,
) a - 2)5/2 (-AI) q2 - ql ) (4.12)
641rzz/y +2z A 1-2 9,9,
3 4z
From (4.10), we can compute
22
x ——l X
992 y+z-yz (4.13)
{ 2 |
o 222+ 2)(x (1 - z) + bxz + 4(y + 2)) (4.14)
G2 9 y+2z - yz

From (4.12) -~ (4.14), it follows that

2 * 2
£ o = a - 2)5/2 {x a - z)/“(y +2), Zzﬁy + 2)(-x"(1 = 2z) + 4xz + 4(y + 2))
1 641rzzv’y + 2z (1 - z)z[y +2z+xz] 1 -z z2x2
1622(y + 2) 4z
1-2 /—x (1 - 2) +4xz+ 4(y +2) . (4.15)

"y + z + x2)

From this we can easily obtain the density of [1 +y +

4V22 +4UWy+z
1 -2z T

} (1 -2)

as
£.(x) = (1-z)/—(l-z)2x2+2(1+y+z-yz)x- (l-y)2
2% 2n(xz + y)
2
(1 - 2)°V(x - a)(b - x)
= 2r(xz + y) - (4.16)
wherea=(1-¢y+z-yz)2 (1+v’y+z-yz) .

a -

z)2 a - z)

Since fl(x) # 0 iff equation (4.10) has two different roots, we find by

checking the steps

of computation that fz(x) $# 0 iff a < x < b,

Recalling (4.9),

we obtain
b
1 k-1
Ek = l—_'—z- J X fz(x)dx
a
- ¢b £, (x)
k 2
- I x [—;(1——_—2—)-] dx. (4.17)
a
(1-z) -
* Note that 2z 1° T6(y+2) (x- q) ( q) for q = q; or q,.
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3 Now, let £ (x) (1 - 2)W(x =-a) - x) if a<x <b
2 2rx(y + xz) '
E® = xm-o T
0 otherwise.

(4.18)

In [7], it is shown that the distribution Fy.z is determined by all its moments.

TR RO

| From (4.11)(4.12) it follows that

Fy.z(x) = YI{(O,N)}(x) + j_wf(x)dx. (4.19) 4

oo

{ where vy=1 - J f(x)dx.

- Q0

ol e

b
Finally, we only need to compute the integral J f(x)dx. If we set
a

: U=[2x- (b + a)]/(b - a), we get
».
q
3 b b b
I = J E(o)ax = =2 [ Y -a)b -0 , _ I - a)(b - x ,.
N a b4 a x a X +-¥
_ (-2 - a) Jl J1-4? du_r’h-uz du]
{ 4y R + Al al + Xz
: b + b+a+ (2
9 where kl =5 : and Az = ab -(ay)/z. Using (2.2) we get
(-2 - a) A -2 -
I 4y [(Al Al 1) (XZ lz \l?J
2
=12-z|:/ab+-z(a+b)+£-—/a_--z]
y z z2 z
L o
¢ _1-z [ y+z _Ji-y|l_y N
A 2y L z(1 - z) 1 -2 z :
) &
== [1+y-|1-y]] :
2y )
<4
q |
1 if0<y=<l1 3
1 ;
= if 1.
v y > J
. . Hence ' ‘
. 0 h
1
- Y= F
¥ 1-1, ;
= y
1

Substituting this into (4.19), we get the expression of Fy,z(x).
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ADDED IN PROOF

After this paper was typed, the following interesting paper was brought
to the attention of the authors:
Wachter, K. W. (1980). The limiting empirical

measure of multiple discriminant ratios. Annals

of Statistics, 8, 937-957,

In the above paper, Wachter gave an explicit expression for the e.d.f. of ]

(XJX')(XX')-1 in the limiting case when p + », J is a projection matrix

and the columns of X: px (n+m) are distributed independently as multivariate

f normal with mean vector 0 and covariance matrix I. When

-~

Tal
o
'
-
8
=)
_—

we observe that (XJX')(XX')-I- (XIXi)(Xlxii-xzxé)-l where X= (X1 Xz)

The random matrix considered by us is equivalent to (xlxi)(xzxé)'l and so our *
result on the limiting e.d.f. can be obtained from the result of Wachter.
But, the method used by us is entirely different from the method used by
Wachter (1980). Also, we derived the moments of the above distribution

and these expressions are new.
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